搜索广告机制设计

Reading time ~6 minutes

[TOC]

机制设计的目标

搜索广告中参与的三方主要是:广告主、平台、用户。那么我们机制设计的目标也主要是优化这三方的利益:

  • Revenue 平台的广告收益
  • Efficiency 带给广告主的价值(有时也称为广告主和平台的效用utilities)
  • Relevance for users 用户的体验(这也能激励广告主按照Relevance 优化自己的广告质量)

而Efficiency 和Relevance 是平台跟竞对比拼的筹码。而如果没有竞对的情况下,平台自然是着意优化Revenue 了。

设计模型

基础模型

假设在单次搜索后的广告列表对某个广告位的Auction 中:

$a_{ij}$ 代表投排到第$i$ 位的广告j的CTR。

$b_j$ 代表这个广告的出价。

$q_j$ 代表这个广告的质量分(比如相关性分数)。

$v_j$ 代表这个广告如果被点击,后续能带给广告主的价值。

那么这个广告的得分应该为:$s_j = q_j * b_j$ ,而广告排序中则以这个分值进行排序。

收费模型

GSP(Generalized Second Price mechanism) :广告主出最少的钱即可赢得广告位,收费为 $\frac{s_{j+1}}{q_j} + 0.01$

  • Overture 按照bid 排序则相当于 $q_j = 1$
  • Google 按照Revenue 排序则相当于 $q_j = a_{ij}$

GFP(Generalized First Price mechanism) : 收费按照广告主出价收,即$b_j$ 。2004 年之前Yahoo 在用。波动较大,因为广告主会尝试调价到最低以赢得竞价。所以 GSP 解决了广告主调价的问题。

VCG(Vickrey-Clarke-Groves mechanism): 如果某个广告$j$赢得这个广告位后,对其他广告主带来了损失。那么就按照这个损失总和收广告主$j$ 的费用。这个实际上是最优化Efficiency 的方法也是激励兼容的(能刺激广告主提高出价以获取更大利润),但算出来的是通过广告主损失的估值计算的。(Facebook 是第一个使用VCG 计价的。)关于激励兼容如后的例子。

假设3个广告主的$v_i$ 值分别为10、4、2,而他们 CTR 相等且在广告位的第一、第二位分别为0.2、0.19。

则对第一个广告主,

  • 出价 4 能赢得第一个广告位,其收益为:0.2*(10-4) = 1.2
  • 出价 3 只能赢得第二个广告位,其收益为:0.19*(10-2) = 1.52

出价更低其利润(v 值减去 GSP 计价后的收费)实际上更高。

排序模型

GSP 中广告排序有几种模型参数1234

  1. s = q * bid 这又叫 Vanilla GSP
  2. 在1 的基础上,bid 超过 reserve 才参与竞价,用1 的排序公式,这叫 GSP with unweighted reserves
  3. s = q * (bid -reserve) 这叫 GSP with quality-weighted reserves
  4. s = $q^\alpha * bid$ 这叫 GSP with quashing; 这也可以跟2或3 结合起来。当 q 值不稳定是,可以使用以提高 effeciency;但 q 值稳定时,则是以 effeciency 换 revenue。
  5. s = $q * (bid - reserve)$ 这叫 anchoring,简单场景中通常最优。

网上这篇内容也写了不好相关内容:互联网广告拍卖机制设计

  1. Feldman, M., Meir, R., & Tennenholtz, M. (2011). Revenue Enhancement in Ad Auctions. In Proceedings of the 7th international conference on Internet and Network Economics (pp. 391–398). Springer-Verlag. https://doi.org/10.1007/978-3-642-25510-6_34 

  2. Lahaie, S., & McAfee, R. P. (2011). Efficient ranking in sponsored search. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 7090 LNCS, pp. 254–265). https://doi.org/10.1007/978-3-642-25510-6-22 

  3. Roberts, B., & Gunawardena, D. (2013). Ranking and tradeoffs in sponsored search auctions. Proceedings of the …, 1(212), 751–766. https://doi.org/10.1145/2492002.2482568 

  4. Thompson, D. R. M., & Leyton-Brown, K. (2013). Revenue optimization in the generalized second-price auction. Proceedings of the ACM Conference on Electronic Commerce, X(X), 837–852. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.363.4962&rep=rep1&type=pdf 

Original post: http://blog.josephjctang.com/2016-11/search-auction-mechanism-design/

2016 記

2015 年做的和沒做的,也大體記錄在了[這裏]({% post_url 2016-01-01-annual-review-and-planning %})。匆匆一年已逝,幾多慨嘆,幾多欣喜。後面列列過去已經做的,以及相對的未來一年的TODO list。主要也是從工作上的個人提升,以及生活上的...… Continue reading

《神经网络》课程笔记

Published on November 06, 2016

如何有效阅读一本书

Published on October 29, 2016